Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Genomics ; 25(1): 431, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693480

RESUMEN

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Asunto(s)
COVID-19 , Edición de ARN , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Adenosina/metabolismo , Inosina/metabolismo , Inosina/genética , Transcriptoma , Ojo/metabolismo , Ojo/virología
2.
Reprod Sci ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653859

RESUMEN

Polycystic Ovary Syndrome (PCOS) is a metabolic disorder characterized by hyperandrogenism and related symptoms in women of reproductive age. Emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development of PCOS. The gut microbiota, a complex bacterial ecosystem, has been extensively studied for various diseases, including PCOS, while the underlying mechanisms are not fully understood. This review comprehensively summarizes the changes in gut microbiota and metabolites observed in PCOS and their potential association with the condition. Additionally, we discuss the role of abnormal nuclear factor κB signaling in the pathogenesis of PCOS. These findings offer valuable insights into the mechanisms of PCOS and may pave the way for the development of control and therapeutic strategies for this condition in clinical practice. By bridging the gap between mouse models and clinical patients, this review contributes to a better understanding of the interplay between gut microbiota and inflammation in PCOS, thus paving new ways for future investigations and interventions.

3.
Cell Rep ; 43(3): 113878, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38431844

RESUMEN

Cytidine deaminase defines the properties of cytosine base editors (CBEs) for C-to-T conversion. Replacing the cytidine deaminase rat APOBEC1 (rA1) in CBEs with a human APOBEC3A (hA3A) improves CBE properties. However, the potential CBE application of macaque A3A orthologs remains undetermined. Our current study develops and evaluates engineered CBEs based on Macaca fascicularis A3A (mA3A). Here, we demonstrate that BE4-mA3A and its RNA-editing-derived variants exhibit improved CBE properties, except for DNA off-target activity, compared to BE3-rA1 and BE4-rA1. Unexpectedly, deleting Ser-Val-Arg (SVR) in BE4-mA3A dramatically reduces DNA and RNA off-target activities and improves editing accuracy, with on-target efficiency unaffected. In contrast, a chimeric BE4-hA3A-SVR+ shows editing efficiency increased by about 50%, with other properties unaffected. Our findings demonstrate that mA3A-based CBEs could provide prototype options with advantages over rA1- and hA3A-based CBEs for further optimization, highlighting the importance of the SVR motif in defining CBE intrinsic properties.


Asunto(s)
Citosina , Edición Génica , Proteínas , Ratas , Animales , Humanos , Macaca fascicularis , Citidina Desaminasa/genética , ARN/genética , ADN/genética , Sistemas CRISPR-Cas
4.
Angew Chem Int Ed Engl ; 63(11): e202317726, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38258338

RESUMEN

The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.


Asunto(s)
Ascomicetos , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas , Ascomicetos/metabolismo , Biología Sintética , Perileno/farmacología , Perileno/metabolismo
5.
Invest Ophthalmol Vis Sci ; 65(1): 13, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38175639

RESUMEN

Purpose: The purpose of this study was to identify key genes and their regulatory networks that are conserved in mouse models of age-related macular degeneration (AMD) and human AMD. Methods: Retinal RNA-Seq was performed in laser-induced choroidal neovascularization (CNV) mice at day 3 and day 7 after photocoagulation. Mass spectrometry-based proteomic analysis was performed with retinas collected at day 3. Retinal RNA-Seq data was further compared among mouse models of laser-induced CNV and NaIO3-induced retinal degeneration (RD) and a large AMD cohort. Results: Retinal RNA-Seq revealed upregulated genes and pathways related to innate immunity and inflammation in mice with CNV, with more profound changes at the early stage (day 3). Proteomic analysis further validated these differentially expressed genes and their networks in retinal inflammation during CNV. Notably, the most evident overlap in the retina of mice with laser-induced CNV and NaIO3-induced RD was the upregulation of inflammation-related genes, pointing to a common vital role of retinal inflammation in the early stage for both mouse AMD models. Further comparative transcriptomic analysis of the mouse AMD models and human AMD identified 48 conserved genes mainly involved in inflammation response. Among them, B2M, C3, and SERPING1 were upregulated in all stages of human AMD and the mouse AMD models compared to controls. Conclusions: Our study demonstrates conserved molecular changes related to retinal inflammation in mouse AMD models and human AMD and provides new insight into the translational application of these mouse models in studying AMD mechanisms and treatments.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Degeneración Retiniana , Humanos , Animales , Ratones , Proteómica , Degeneración Macular/genética , Retina , Inflamación , Neovascularización Coroidal/genética , Modelos Animales de Enfermedad
6.
Biochem Biophys Res Commun ; 695: 149373, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176170

RESUMEN

Recent studies have revealed that tumor immunotherapy resistance is influenced by ADAR-mediated RNA editing, but its targets remain unelucidated. Our current study identified the poliovirus receptor (PVR) oncogene, which encodes an immune checkpoint in colorectal cancer (CRC), as a potential target for RNA editing. We performed transcriptome sequencing analysis and experimental validation in two Chinese CRC cohorts. PVR and ADAR expressions significantly increased in CRC tumors and showed positive correlations in both cohorts, coupled with upregulated PVR RNA editing in CRC tumors. Manipulation of ADAR expression by over-expression or knockdown substantially changed PVR expression and RNA editing in HTC116 CRC cells. Luciferase reporter and actinomycin D assays further revealed that RNA editing in PVR 3'-UTR could upregulate PVR RNA expression, probably by increasing the RNA stability. By increasing PVR expression, ADAR-mediate RNA editing might contribute to tumor- and immune-related gene functions and pathways in CRC. Moreover, a signature combining PVR RNA editing and expression showed promising predictive performance in CRC diagnosis in both Chinese CRC cohorts. Our findings thus highlight the importance of ADAR-mediated RNA editing in PVR up-regulation in CRC tumors and provide new insight into the application of PVR RNA editing as a novel diagnostic biomarker for CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Unión al ARN , Receptores Virales , Humanos , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo
7.
BMC Med ; 21(1): 491, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082312

RESUMEN

BACKGROUND: Major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD) are complex genetic mental illnesses. Their non-Mendelian features, such as those observed in monozygotic twins discordant for SCZ or BPD, are likely complicated by environmental modifiers of genetic effects. 5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark in gene regulation, and whether it is linked to genetic variants that contribute to non-Mendelian features remains largely unexplored. METHODS: We combined the 5hmC-selective chemical labeling method (5hmC-seq) and whole-genome sequencing (WGS) analysis of peripheral blood DNA obtained from monozygotic (MZ) twins discordant for SCZ or BPD to identify allelic imbalances in hydroxymethylome maps, and examined association of allele-specific hydroxymethylation (AShM) transition with disease susceptibility based on Bayes factors (BF) derived from the Bayesian generalized additive linear mixed model. We then performed multi-omics integrative analysis to determine the molecular pathogenic basis of those AShM sites. We finally employed luciferase reporter, CRISPR/Cas9 technology, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), PCR, FM4-64 imaging analysis, and RNA sequencing to validate the function of interested AShM sites in the human neuroblastoma SK-N-SH cells and human embryonic kidney 293T (HEK293T) cells. RESULTS: We identified thousands of genetic variants associated with AShM imbalances that exhibited phenotypic variation-associated AShM changes at regulatory loci. These AShM marks showed plausible associations with SCZ or BPD based on their effects on interactions among transcription factors (TFs), DNA methylation levels, or other epigenomic marks and thus contributed to dysregulated gene expression, which ultimately increased disease susceptibility. We then validated that competitive binding of POU3F2 on the alternative allele at the AShM site rs4558409 (G/T) in PLLP-enhanced PLLP expression, while the hydroxymethylated alternative allele, which alleviated the POU3F2 binding activity at the rs4558409 site, might be associated with the downregulated PLLP expression observed in BPD or SCZ. Moreover, disruption of rs4558409 promoted neural development and vesicle trafficking. CONCLUSION: Our study provides a powerful strategy for prioritizing regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic factors in mediating SCZ or BPD susceptibility.


Asunto(s)
Esquizofrenia , Gemelos Monocigóticos , Humanos , Teorema de Bayes , Alelos , Gemelos Monocigóticos/genética , Células HEK293 , Metilación de ADN/genética , Esquizofrenia/genética , Predisposición Genética a la Enfermedad , Epigénesis Genética/genética
8.
Front Endocrinol (Lausanne) ; 14: 1170957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547318

RESUMEN

Background: Polycystic ovary syndrome (PCOS) is a complex, multifactor disorder in women of reproductive age worldwide. Although RNA editing may contribute to a variety of diseases, its role in PCOS remains unclear. Methods: A discovery RNA-Seq dataset was obtained from the NCBI Gene Expression Omnibus database of granulosa cells from women with PCOS and women without PCOS (controls). A validation RNA-Seq dataset downloaded from the European Nucleotide Archive Databank was used to validate differential editing. Transcriptome-wide investigation was conducted to analyze adenosine-to-inosine (A-to-I) RNA editing in PCOS and control samples. Results: A total of 17,395 high-confidence A-to-I RNA editing sites were identified in 3,644 genes in all GC samples. As for differential RNA editing, there were 545 differential RNA editing (DRE) sites in 259 genes with Nucleoporin 43 (NUP43), Retinoblastoma Binding Protein 4 (RBBP4), and leckstrin homology-like domain family A member 1 (PHLDA) showing the most significant three 3'-untranslated region (3'UTR) editing. Furthermore, we identified 20 DRE sites that demonstrated a significant correlation between editing levels and gene expression levels. Notably, MIR193b-365a Host Gene (MIR193BHG) and Hook Microtubule Tethering Protein 3 (HOOK3) exhibited significant differential expression between PCOS and controls. Functional enrichment analysis showed that these 259 differentially edited genes were mainly related to apoptosis and necroptosis pathways. RNA binding protein (RBP) analysis revealed that RNA Binding Motif Protein 45 (RBM45) was predicted as the most frequent RBP binding with RNA editing sites. Additionally, we observed a correlation between editing levels of differential editing sites and the expression level of the RNA editing enzyme Adenosine Deaminase RNA Specific B1 (ADARB1). Moreover, the existence of 55 common differentially edited genes and nine differential editing sites were confirmed in the validation dataset. Conclusion: Our current study highlighted the potential role of RNA editing in the pathophysiology of PCOS as an epigenetic process. These findings could provide valuable insights into the development of more targeted and effective treatment options for PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , ARN , Humanos , Femenino , ARN/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Edición de ARN , Perfilación de la Expresión Génica , Células de la Granulosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Front Neurosci ; 17: 1220114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449273

RESUMEN

Myopia is one of the most common causes of vision loss globally and is significantly affected by epigenetics. Adenosine-to-inosine (A-to-I RNA) editing is an epigenetic process involved in neurological disorders, yet its role in myopia remains undetermined. We performed a transcriptome-wide analysis of A-to-I RNA editing in the retina of form-deprivation myopia mice. Our study identified 91 A-to-I RNA editing sites in 84 genes associated with myopia. Notably, at least 27 (32.1%) of these genes with myopia-associated RNA editing showed existing evidence to be associated with myopia or related ocular phenotypes in humans or animal models, such as very low-density lipoprotein receptor (Vldlr) in retinal neovascularization and hypoxia-induced factor 1 alpha (Hif1a). Moreover, functional enrichment showed that RNA editing enriched in FDM was primarily involved in response to fungicides, a potentially druggable process for myopia prevention, and epigenetic regulation. In contrast, RNA editing enriched in controls was mostly involved in post-embryonic eye morphogenesis. Our results demonstrate altered A-to-I RNA editing associated with myopia in an experimental mouse model and warrant further study on its role in myopia development.

10.
BMJ Open Ophthalmol ; 8(1)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37278423

RESUMEN

BACKGROUND: The current study aimed to analyse epidemiological data on eye burns in Wuxi, China, for the years 2015-2021, and to provide insight into the development of appropriate prevention strategies. METHODS: A retrospective study was conducted on 151 hospitalised patients with eye burns. Data collected included gender, age, the monthly distribution of incidence, cause of eye burn, the site of eye burn, the type of surgery, visual outcome, the length of hospital stay and the cost of hospital admission. Statistical analysis was performed using SPSS V.19.0 and Graph Pad Prism V.9.0. RESULTS: In a total of 151 eye burn patients, 130 were males (86.09%) and 21 were females (13.91%). The proportion of patients classified as grade III was the greatest (46.36%). The average age of our hospitalised patients with eye burns was 43.72 years and the average length of hospital stay was 17 days. The number of injuries was highest in September (14.6%). Among eye burn patients, workers and farmers became the most common occupations (62.91%, 12.58%). The most frequent cause of burns was alkali burns (19.21%), followed by acid burns (16.56%). When admitted to the hospital, patients' average vision was 0.06, and 49% of them had a poor vision (<0.3, ≥0.05). CONCLUSION: With an investigation of 7-year hospitalisation data, the current study provided a fundamental reference for epidemiological features and management of eye burns in Wuxi, China, which could contribute to the development of treatment and prevention strategies.


Asunto(s)
Quemaduras Químicas , Quemaduras Oculares , Masculino , Femenino , Humanos , Adulto , Estudios Retrospectivos , Quemaduras Químicas/epidemiología , Quemaduras Oculares/epidemiología , Hospitalización , China/epidemiología
11.
QJM ; 116(9): 766-773, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37286376

RESUMEN

OBJECTIVE: COVID-19 might cause neuroinflammation in the brain, which could decrease neurocognitive function. We aimed to evaluate the causal associations and genetic overlap between COVID-19 and intelligence. METHODS: We performed Mendelian randomization (MR) analyses to assess potential associations between three COVID-19 outcomes and intelligence (N = 269 867). The COVID phenotypes included severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (N = 2 501 486), hospitalized COVID-19 (N = 1 965 329) and critical COVID-19 (N = 743 167). Genome-wide risk genes were compared between the genome-wide association study (GWAS) datasets on hospitalized COVID-19 and intelligence. In addition, functional pathways were constructed to explore molecular connections between COVID-19 and intelligence. RESULTS: The MR analyses indicated that genetic liabilities to SARS-CoV-2 infection (odds ratio [OR]: 0.965, 95% confidence interval [CI]: 0.939-0.993) and critical COVID-19 (OR: 0.989, 95% CI: 0.979-0.999) confer causal effects on intelligence. There was suggestive evidence supporting the causal effect of hospitalized COVID-19 on intelligence (OR: 0.988, 95% CI: 0.972-1.003). Hospitalized COVID-19 and intelligence share 10 risk genes within 2 genomic loci, including MAPT and WNT3. Enrichment analysis showed that these genes are functionally connected within distinct subnetworks of 30 phenotypes linked to cognitive decline. The functional pathway revealed that COVID-19-driven pathological changes within the brain and multiple peripheral systems may lead to cognitive impairment. CONCLUSIONS: Our study suggests that COVID-19 may exert a detrimental effect on intelligence. The tau protein and Wnt signaling may mediate the influence of COVID-19 on intelligence.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudio de Asociación del Genoma Completo , Encéfalo , Inteligencia/genética , Polimorfismo de Nucleótido Simple
12.
Front Microbiol ; 14: 1112709, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180270

RESUMEN

Purpose: Helicobacter pylori (HP) infection is an identified risk factor for pediatric chronic gastritis (PCG), but its impact on gastric juice microbiota (GJM) remains to be further elucidated in PCG. This study aimed to analyze and compare the microbial communities and microbial interactive networks of GJM in PCG that clinically tested positive and negative for HP (HP+ and HP-, respectively). Methods: A total of 45 PCG patients aged from 6 to 16 years were recruited, including 20 HP+ and 25 HP- patients tested by culture and rapid urease test. Gastric juice samples were collected from these PCG patients and subjected to high-throughput amplicon sequencing and subsequent analysis of 16S rRNA genes. Results: While no significant change in alpha diversity, significant differences in beta diversity were observed between HP+ and HP- PCG. At the genus level, Streptococcus, Helicobacter, and Granulicatella were significantly enriched in HP+ PCG, whereas Campylobacter and Absconditabacteriales (SR1) were significantly enriched in HP- PCG. Network analysis showed that Streptococcus was the only genus positively correlated with Helicobacter (r = 0.497) in the GJM network of overall PCG. Moreover, compared to HP- PCG, HP+ PCG showed a reduction in microbial network connectivity in GJM. Netshift analysis identified driver microbes including Streptococcus and other four genera, which substantially contributed to the GJM network transition from HP- PCG to HP+ PCG. Furthermore, Predicted GJM function analysis indicated up-regulated pathways related to the metabolism of nucleotides, carbohydrates, and L-Lysine, the urea cycle, as well as endotoxin peptidoglycan biosynthesis and maturation in HP+ PCG. Conclusion: GJM in HP+ PCG exhibited dramatically altered beta diversity, taxonomic structure, and function, with reduced microbial network connectivity, which could be involved in the disease etiology.

13.
Front Immunol ; 14: 1121096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081881

RESUMEN

Background: Microbial infection is accompanied by remodeling of the host transcriptome. Involvement of A-to-I RNA editing has been reported during viral infection but remains to be elucidated during intracellular bacterial infections. Results: Herein we analyzed A-to-I RNA editing during intracellular bacterial infections based on 18 RNA-Seq datasets of 210 mouse samples involving 7 tissue types and 8 intracellular bacterial pathogens (IBPs), and identified a consensus signature of RNA editing for IBP infections, mainly involving neutrophil-mediated innate immunity and lipid metabolism. Further comparison of host RNA editing patterns revealed remarkable similarities between pneumonia caused by IBPs and single-strand RNA (ssRNA) viruses, such as altered editing enzyme expression, editing site numbers, and levels. In addition, functional enrichment analysis of genes with RNA editing highlighted that the Rab GTPase family played a common and vital role in the host immune response to IBP and ssRNA viral infections, which was indicated by the consistent up-regulated RNA editing of Ras-related protein Rab27a. Nevertheless, dramatic differences between IBP and viral infections were also observed, and clearly distinguished the two types of intracellular infections. Conclusion: Our study showed transcriptome-wide host A-to-I RNA editing alteration during IBP and ssRNA viral infections. By identifying and comparing consensus signatures of host A-to-I RNA editing, our analysis implicates the importance of host A-to-I RNA editing during these infections and provides new insights into the diagnosis and treatment of infectious diseases.


Asunto(s)
Infecciones Bacterianas , Infecciones por Virus ARN , Virus ARN , Virosis , Animales , Ratones , Edición de ARN , Virosis/genética , ARN , Virus ARN/genética , Infecciones Bacterianas/genética
14.
BMC Med Genomics ; 16(1): 61, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973786

RESUMEN

BACKGROUND: Solute Carrier Family 31 Member 1 (SLC31A1) has recently been identified as a cuproptosis-regulatory gene. Recent studies have indicated that SLC31A1 may play a role in colorectal and lung cancer tumorigenesis. However, the role of SLC31A1 and its cuproptosis-regulatory functions in multiple tumor types remains to be further elucidated. METHODS: Online websites and datasets such as HPA, TIMER2, GEPIA, OncoVar, and cProSite were used to extract data on SLC31A1 in multiple cancers. DAVID and BioGRID were used to conduct functional analysis and construct the protein-protein interaction (PPI) network, respectively. The protein expression data of SLC31A1 was obtained from the cProSite database. RESULTS: The Cancer Genome Atlas (TCGA) datasets showed increased SLC31A1 expression in tumor tissues compared with non-tumor tissues in most tumor types. In patients with tumor types including adrenocortical carcinoma, low-grade glioma, or mesothelioma, higher SLC31A1 expression was associated with shorter overall survival and disease-free survival. S105Y was the most prevalent point mutation in SLC31A1 in TCGA pan-cancer datasets. Moreover, SLC31A1 expression was positively correlated with the infiltration of immune cells such as macrophages and neutrophils in tumor tissues in several tumor types. Functional enrichment analysis showed that SLC31A1 co-expressed genes were involved in protein binding, integral components of the membrane, metabolic pathways, protein processing, and endoplasmic reticulum. Copper Chaperone For Superoxide Dismutase, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha and Solute Carrier Family 31 Member 2 were copper homeostasis-regulated genes shown in the PPI network, and their expression was positively correlated with SLC31A1. Analysis showed there was a correlation between SLC31A1 protein and mRNA in various tumors. CONCLUSIONS: These findings demonstrated that SLC31A1 is associated with multiple tumor types and disease prognosis. SLC31A1 may be a potential key biomarker and therapeutic target in cancers.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Neoplasias Pulmonares , Humanos , Cobre , Biomarcadores , Transportador de Cobre 1
15.
Front Psychiatry ; 13: 896794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664469

RESUMEN

Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.

16.
Front Genet ; 13: 887001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559016

RESUMEN

Recent studies suggest that RNA editing is associated with impaired brain function and neurological and psychiatric disorders. However, the role of A-to-I RNA editing during sepsis-associated encephalopathy (SAE) remains unclear. In this study, we analyzed adenosine-to-inosine (A-to-I) RNA editing in postmortem brain tissues from septic patients and controls. A total of 3024 high-confidence A-to-I RNA editing sites were identified. In sepsis, there were fewer A-to-I RNA editing genes and editing sites than in controls. Among all A-to-I RNA editing sites, 42 genes showed significantly differential RNA editing, with 23 downregulated and 19 upregulated in sepsis compared to controls. Notably, more than 50% of these genes were highly expressed in the brain and potentially related to neurological diseases. Notably, cis-regulatory analysis showed that the level of RNA editing in six differentially edited genes was significantly correlated with the gene expression, including HAUS augmin-like complex subunit 2 (HAUS2), protein phosphatase 3 catalytic subunit beta (PPP3CB), hook microtubule tethering protein 3 (HOOK3), CUB and Sushi multiple domains 1 (CSMD1), methyltransferase-like 7A (METTL7A), and kinesin light chain 2 (KLC2). Furthermore, enrichment analysis showed that fewer gene functions and KEGG pathways were enriched by edited genes in sepsis compared to controls. These results revealed alteration of A-to-I RNA editing in the human brain associated with sepsis, thus providing an important basis for understanding its role in neuropathology in SAE.

17.
Front Microbiol ; 13: 876043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401492

RESUMEN

Emerging evidence has been reported to support the involvement of the gut microbiota in the host's blood lipid and hyperlipidemia (HLP). However, there remains unexplained variation in the host's blood lipid phenotype. Herein a nonhuman primate HLP model was established in cynomolgus monkeys fed a high-fat diet (HFD) for 19 months. At month 19%, 60% (3/5) of the HFD monkeys developed HLP, but surprisingly 40% of them (2/5) exhibited strong tolerance to the HFD (HFD-T) with their blood lipid profiles returning to normal levels. Metagenomic analysis was used to investigate the compositional changes in the gut microbiota in these monkeys. Furthermore, the relative abundance of Megasphaera remarkably increased and became the dominant gut microbe in HFD-T monkeys. A validation experiment showed that transplantation of fecal microbiota from HFD-T monkeys reduced the blood lipid levels and hepatic steatosis in HLP rats. Furthermore, the relative abundance of Megasphaera significantly increased in rats receiving transplantation, confirming the successful colonization of the microbe in the host and its correlation with the change of the host's blood lipid profiles. Our results thus suggested a potentially pivotal lipid-lowering role of Megasphaera in the gut microbiota, which could contribute to the variation in the host's blood lipid phenotype.

18.
Genomics Proteomics Bioinformatics ; 20(2): 350-365, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34974191

RESUMEN

Recent population studies have significantly advanced our understanding of how age shapes the gut microbiota. However, the actual role of age could be inevitably confounded due to the complex and variable environmental factors in human populations. A well-controlled environment is thus necessary to reduce undesirable confounding effects, and recapitulate age-dependent changes in the gut microbiota of healthy primates. Herein we performed 16S rRNA gene sequencing, characterized the age-associated gut microbial profiles from infant to elderly crab-eating macaques reared in captivity, and systemically revealed the lifelong dynamic changes of the primate gut microbiota. While the most significant age-associated taxa were mainly found as commensals such as Faecalibacterium, the abundance of a group of suspicious pathogens such as Helicobacter was exclusively increased in infants, underlining their potential role in host development. Importantly, topology analysis indicated that the network connectivity of gut microbiota was even more age-dependent than taxonomic diversity, and its tremendous decline with age could probably be linked to healthy aging. Moreover, we identified key driver microbes responsible for such age-dependent network changes, which were further linked to altered metabolic functions of lipids, carbohydrates, and amino acids, as well as phenotypes in the microbial community. The current study thus demonstrates the lifelong age-dependent changes and their driver microbes in the primate gut microbiota, and provides new insights into their roles in the development and healthy aging of their hosts.


Asunto(s)
Microbioma Gastrointestinal , Envejecimiento Saludable , Microbiota , Humanos , Lactante , Animales , Anciano , ARN Ribosómico 16S/genética , Haplorrinos/genética
19.
Front Microbiol ; 12: 783195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858382

RESUMEN

Our previous study identified a new ß-galactosidase in Erwinia sp. E602. To further understand the lactose metabolism in this strain, de novo genome assembly was conducted by using a strategy combining Illumina and PacBio sequencing technology. The whole genome of Erwinia sp. E602 includes a 4.8 Mb chromosome and a 326 kb large plasmid. A total of 4,739 genes, including 4,543 protein-coding genes, 25 rRNAs, 82 tRNAs and 7 other ncRNAs genes were annotated. The plasmid was the largest one characterized in genus Erwinia by far, and it contained a number of genes and pathways responsible for lactose metabolism and regulation. Moreover, a new plasmid-borne lac operon that lacked a typical ß-galactoside transacetylase (lacA) gene was identified in the strain. Phylogenetic analysis showed that the genes lacY and lacZ in the operon were under positive selection, indicating the adaptation of lactose metabolism to the environment in Erwinia sp. E602. Our current study demonstrated that the hybrid de novo genome assembly using Illumina and PacBio sequencing technologies, as well as the metabolic pathway analysis, provided a useful strategy for better understanding of the evolution of undiscovered microbial species or strains.

20.
Front Immunol ; 12: 715559, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539647

RESUMEN

The involvement of gut microbiota in T-cell trafficking into tumor tissue of colorectal cancer (CRC) remains to be further elucidated. The current study aimed to evaluate the expression of major cytotoxic T-cell trafficking chemokines (CTTCs) and chemokine-associated microbiota profiles in both tumor and adjacent normal tissues during CRC progression. We analyzed the expression of chemokine C-X-C motif ligands 9, 10, and 11 (CXCL9, CXCL10, and CXCL11), and C-C motif ligand 5 (CCL5), characterized gut mucosa-associated microbiota (MAM), and investigated their correlations in CRC patients. Our results showed that the expression of CXCL9, CXCL10, and CXCL11 was significantly higher in tumor than in adjacent normal tissues in 136 CRC patients. Notably, the high expression of CXCL9 in tumor tissues was associated with enhanced CD8+ T-cell infiltration and improved survival. Moreover, the MAM in tumor tissues showed reduction of microbial diversity and increase of oral bacteria. Microbial network analysis identified differences in microbial composition and structure between tumor and adjacent normal tissues. In addition, stronger associations between oral bacteria and other gut microbes were observed. Furthermore, the correlation analysis between the defined MAM and individual CTTCs showed that the CTTCs' correlated operational taxonomic units (OTUs) in tumor and adjacent normal tissues rarely overlap with each other. Notably, all the enriched OTUs were positively correlated with the CTTCs in either tumor or adjacent normal tissues. Our findings demonstrated stronger interactions between oral bacteria and gut microbes, and a shifted correlation pattern between MAM and major CTTCs in tumor tissues, underlining possible mechanisms of gut microbiota-host interaction in CRC.


Asunto(s)
Quimiocinas/metabolismo , Quimiotaxis de Leucocito/inmunología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Microbioma Gastrointestinal/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Adulto , Anciano , Biomarcadores , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Masculino , Metagenoma , Metagenómica , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...